Новая энергетика - Геотермальная энергетика
Земля, эта маленькая зеленая планета,–наш общий дом, из которого мы пока не можем, да и не хотим, уходить. По сравнению с мириадами других планет Земля действительно невелика: большая ее часть покрыта уютной и живительной зеленью.
Но эта прекрасная и спокойная планета порой приходит в ярость, и тогда с ней шутки плохи – она способна уничтожить все, что милостиво дарила нам с незапамятных времен. Грозные смерчи и тайфуны уносят тысячи жизней, неукротимые воды рек и морей разрушают все на своем пути, лесные пожары за считанные часы опустошают огромные территории вместе с постройками и посевами.
Но все это мелочи по сравнению с извержением проснувшегося вулкана. Едва ли сыщешь на Земле другие примеры стихийного высвобождения природной энергии, которые по силе могли бы соперничать с некоторыми вулканами.
Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых
крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии
находит выход через огнедышащие жерла вулканов.
Энергетика земли – геотермальная энергетика базируется на использовании природной теплоты Земли. Верхняя часть земной коры имеет термический градиент, равный 20–30 °С в расчете на 1 км глубины, и, по данным Уайта (1965 г.), количество теплоты, содержащейся в земной коре до глубины 10 км (без учета температуры
поверхности), равно приблизительно 12,6-10^26 Дж. Эти ресурсы эквивалентны теплосодержанию 4,6·1016 т угля (принимая среднюю теплоту сгорания угля равной 27,6-109 Дж/т), что более чем в 70 тыс. раз превышает теплосодержание всех технически и экономически извлекаемых мировых ресурсов угля. Однако геотермальная теплота в верхней части земной коры (до глубины 10 км) слишком рассеяна, чтобы на ее базе решать мировые энергетические проблемы. Ресурсы,
пригодные для промышленного использования, представляют собой отдельные месторождения геотермальной энергии, сконцентрированной на доступной для разработки глубине, имеющие определенные объемы и температуру, достаточные для использования их в целях производства электрической энергии или теплоты.
С геологической точки зрения геотермальные энергоресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком.
Гидротермальные системы в категории гидротермальных конвективных систем относят подземные бассейны пара или горячей воды, которые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера и фумаролы. Образование таких систем связано с наличием источника теплоты горячен или расплавленной скальной породой,
расположенной относительно близко к поверхности земли. Над этой зоной высокотемпературной скальной породы находится формация из проницаемой горной породы, содержащая воду, которая поднимается вверх в результате ее подстилающей горячей породой. Проницаемая порода, в свою очередь, сверху покрыта непроницаемой скальной породой, образующей «ловушку» для перегретой воды. Однако
наличие в этой породе трещин или пор позволяет горячей воде или пароводяной смеси подниматься к поверхности земли. Гидротермальные конвективные системы обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность.
В принципе для производства электроэнергии на месторождениях с горячей водой применяется метод, основанный на использовании пара, образовавшегося при испарении горячей жидкости на поверхности. Этот метод использует то явление, что при приближении горячей воды (находящейся под высоким давлением) по скважинам
из бассейна к поверхности давление падает и около 20 % жидкости вскипает и превращается в пар. Этот пар отделяется с помощью сепаратора от воды и направляется в турбину. Вода, выходящая из сепаратора, может быть подвергнута дальнейшей обработке в зависимости от ее минерального состава. Эту воду можно
закачивать обратно в скальные породы сразу или, если это экономически оправдано, с предварительным извлечением из нее минералов. Примерами геотермальных месторождений с горячей водой являются Уайракей и Бродлендс в Новой Зеландии, Серро-Прието в Мексике, Солтон-Си в Калифорнии, Отаке в Японии.
Другим методом производства электроэнергии на базе высоко - или
среднетемпературных геотермальных вод является использование процесса с применением двухконтурного (бинарного) цикла. В этом процессе вода, полученная из бассейна, используется для нагрева теплоносителя второго контура (фреона или изобутана), имеющего низкую температуру кипения. Пар, образовавшийся в результате кипения этой жидкости, используется для привода турбины.
Отработавший пар конденсируется и вновь пропускается через теплообменник, создавая тем самым замкнутый цикл. Установки, использующие фреон в качестве теплоносителя второго контура, о настоящее время подготовлены для промышленного освоения в диапазоне температур 75–150 °С и при единичной электрической мощности в пределах 10–100 кВт. Такие установки могут быть
использованы для производства электроэнергии в подходящих для этого местах, особенно в отдаленных сельских районах.
Горячие системы вулканического происхождения Ко второму типу геотермальных ресурсов (горячие системы вулканического
происхождения) относятся магма и непроницаемые горячие сухие породы (зоны застывшей породы вокруг магмы и покрывающие ее скальные породы). Получение геотермальной энергии непосредственно из магмы пока технически неосуществимо.
Технология, необходимая для использования энергии горячих сухих пород, только начинает разрабатываться. Предварительные технические разработки методов использования этих энергетических ресурсов предусматривают устройство замкнутого контура с циркулирующей по нему жидкостью, проходящего через
горячую породу. Сначала пробуривают скважину, достигающую области
залегания горячей породы; затем через нее в породу под большим давлением закачивают холодную воду, что приводит к образованию в ней трещин. После этого через образованную таким образом зону трещиноватой породы пробуривают вторую скважину. Наконец, холодную воду с поверхности закачивают в первую скважину.
Проходя через горячую породу, она нагревается II извлекается через вторую скважину в виде пара или горячей воды, которые затем можно использовать для производства электроэнергии одним из рассмотренных ранее способов.
Системы с высоким тепловым потоком Геотермальные системы третьего типа существуют в тех районах, где в зоне с высокими значениями теплового потока располагается глубокозалегающий осадочный бассейн. В таких районах, как Парижский или Венгерский бассейны,
температура воды, поступающая из скважин, может достигать 100 °С.
Особая категория месторождений этого типа находится в районах, где
нормальный тепловой поток через грунт оказывается в ловушке из изолирующих непроницаемых пластов глины, образовавшихся в быстро опускающихся геосинклинальных зонах или в областях опускания земной коры. Температура воды, поступающей из геотермальных месторождений в зонах геодавления, может достигать 150–180 °С, а давление у устья скважины 28–56 МПа. Суточная производительность в расчете на одну скважину может составлять несколько
миллионов кубических метров флюида. Геотермальные бассейны в зонах повышенного геодавления найдены во многих районах в ходе нефтегазоразведки, например, в Северной и Южной Америке, на Дальнем и Ближнем Востоке, в Африке и Европе. Возможность использования таких месторождений в энергетических целях
пока еще не продемонстрирована.
Читайте: |
---|
Нововоронежская АЭСНововоро нежская АЭС — атомная электростанция, расположена в Воронежской области рядом с городом Нововоронеж. Является филиалом ... |
Бурейская ГЭСБуре йская гидроэлектроста нция — действующая ГЭС на реке Бурее, в Амурской области у посёлка Талакан. Входит в Бурейский каскад... |
Братская ГЭСБра тская гидроэлектроста нция (им. 50 летия Великого Октября) — гидроэлектростанция наАнгаре в городе Братск Иркутской области.... |
Хмельницкая АЭСОбщие сведения. Хмельницкая АЭС (ХАЭС) расположена в Славутском районе Хмельницкой области возле реки Горынь. Основное назначени... |
Волжская ГЭСВо лжская гидроэлектроста нция (Сталинградская/Волгоградская ГЭС, им. XXII съезда КПСС) — ГЭС на реке Волге в Волгоградской обла... |
Итайпу«Итайпу » — крупная ГЭС на реке Парана, за 20 км до г. Фос-ду-Игуасу (Foz do Iguacu) на границе Бразилии и Парагвая Работы по пр... |
КОСМИЧЕСКИЕ ЭЛЕКТРОСТАНЦИИ |
ЛАЗЕРЫ ПРЯМОЙ НАВОДКОЙ |
Энергия космоса наше будущее? |