Перспективы развития водородной энергетики. Проблемы экономики, экологии

Новая энергетика - Водородная энергетика

перспективы развития водородной энергетики. проблемы экономики, экологии

Энергетика – основа развития человеческой цивилизации. В настоящее время суммарное потребление энергии в мире составляет около 460 млн. ТДж в год и продолжает расти. Основными видами первичных энергоресурсов являются нефть, природный газ, уголь. В меньшей степени для получения электроэнергии используются также гидроэнергетика и уран. Ресурсы ископаемых энергоносителей, в первую очередь нефти, ограничены. Кроме того, использование углеродных энергоносителей является причиной нарастающего экологического кризиса, в том числе глобальных климатических изменений.

Отрицательные экологические последствия использования нефтяных топлив на транспорте в первую очередь заметны в крупных промышленных и культурных центрах. Например, для города с населением примерно 1 млн. человек на долю автотранспорта приходится примерно 70% от суммарного количества (несколько сот тонн в сутки) экологически вредных, в том числе токсичных выбросов, суммарный ущерб от которых составляет в год десятки миллионов долларов, хотя в общем энергетическом балансе города на моторное топливо приходится не более 20 %.

С водородной энергетикой (экономикой) связаны надежды на глобальное переустройство мировой экономики, к переходу от ископаемых углеводородных энергоносителей к водороду, что открывает возможность использования в качестве неограниченной сырьевой базы водные ресурсы, а продуктами сгорания водорода являются пары воды. В отдаленном будущем для получения электролитического водорода предполагается использовать в основном термоядерную, солнечную и другие возобновляемые источники энергии (ВИЭ).

Однако в настоящее время широкомасштабное производство водорода из воды ограничивается отсутствием необходимых свободных и дешевых энергетических мощностей. Например, для замены во всех странах моторного топлива водородом потребовалось бы 20 - 30 тыс. млрд. кВт.чэлектроэнергии, в то время как мировая выработка ее составляет примерно 15 тыс. млрд. кВт.ч.

Тем не менее для улучшения экологической обстановки в городе уже в настоящее время необходимо и можно изыскать энергетические ресурсы для получения водорода.

Сюда можно отнести использование избыточных мощностей электрогенерирующих станций в ночные часы и выходные дни, когда спадает потребность в электроэнергии. Например, только на Ленинградской АЭС потенциал неиспользованной электроэнергии составляют порядка 400 млн. кВт.ч, в год ( в целом же по стране - примерно 20 млрд. кВт.ч, что на порядок превышает экономию электроэнергии с переходом на летнее время). Использование указанных мощностей дало бы возможность получать около 5000 т. жидкого электролитического водорода в год и обеспечить водородом около 3900 единиц автотранспорта ( в первую очередь грузового и автобусного ). Водород эффективен и в качестве присадки к моторному топливу. Например, 5 – 8 %вес. водорода на70 % снижает токсичность выхлопа ДВС и повышает его экономичность. В этом случае количество автотранспорта, использующего то же количество водорода, увеличивается до 12 тыс. единиц.Экономические затраты на создание водородной инфраструктуры окупятся в течение нескольких лет за счет экономии бензина и снижения экологического ущерба.

Экономически оправданным и целесообразным являлось бы использование энергетических резервов, получаемых за счет снижения удельной энергоемкости экономики (примерно на 3,5 относительных % в год). Предварительная оценка показывает, что вполне реальной представляется задача постепенного перевода автотранспорта на водород, примерно в количестве 10 тыс. единиц к 2010 г. и 20 тыс. - к 2020 г. Для выработки электролитического водорода и его последующего сжижения потребуется около 1млрд. кВт.ч электроэнергии (при существующей технике электролиза и сжижения), что составляет соответственно0,1 и 0,2% от объема потребляемой в стране в настоящее время электроэнергии. Стоимость капитальных затрат на водородную инфраструктуру (мощностью 12775 т водорода в год) составит примерно 95,7млн. долл.

При окупаемости в течении 5 лет (учитывается стоимость неиспользованного бензина (в ценах 2005 г.) и отсутствие экологического ущерба за счет токсичности выхлопа ДВС ) и - 3,3 года (учитывается отсутствие ущерба окружающей среде, наносимого в целом использованием нефти).

Развитие водородных технологий необходимо тесно увязывать с развитием в целом с ТЭК страны, экологической ситуацией, сложившейся в конкретном регионе, а также с Решением по Киотскому протоколу. Однако отставание в развитие водородных технологий от уровня передовых стран может привести к потере передовых позиций страны в энергетике и экономике.

Как наиболее реальными и экономически подтвержденными можно представить следующие основные этапы перехода к водородной экономике.

1 этап – 2010 г. Замена на автотранспорте нефтяных моторных топлив на природный газ в том числе – на сжиженный (СПГ), инфраструктура которого близка жидководородной.

2 этап – 2012 г. Наряду с применением в качестве моторного топлива СПГ, использование водорода в качестве добавки (5 – 8% ) к основному моторному топливу в ДВС или в электрохимических генераторах гибридных двигателей.

3 этап - 2020 г. Получение водорода с частичным использованием ВИЭ (по прогнозу их доля в производстве электроэнергии в мире возрастет до 18 – 20%) и переработанного угля.

4 этап – 2050 г. Перевод всех видов энергетики и транспорта на водород, производимый преимущественно от ВИЭ (к этому периоду их доля в выработке электроэнергии в мире составит примерно 40%), термоядерной энергии и угля.

Актуальность скорейшего перехода к водородным проектам позволила бы накопить опыт практической работы по созданию и освоению водородных технологий (производству, накоплению, транспортировки, созданию заправочных станций и др.), разработке необходимых для их безопасной эксплуатации кодов и стандартов, начать подготовку квалифицированных специалистов, повысить уровень доверия городского населения по отношению к водородному топливу. В конечном счете уровень освоения водородных технологий по прогнозам специалистов будет в будущем определять энергетическую и экономическую безопасность страны.




Читайте:


Добавить комментарий


Защитный код
Обновить

Каталог энергетических компаний:

Балаковская АЭС

News image

Балако вская АЭС — атомная электрическая станция, расположена рядом с городом Балаково, Саратовской области, на левом берегуСара...

Энергоатом

News image

Общие сведения. 17 октября 1996 года постановлением Кабмина Украины было создано государственное предприятие Национальная атомн...

Каховская ГЭС

News image

Каховская ГЭС (укр. Каховська ГЕС) — шестая (нижняя) ступень каскада днепровскихгидроэлектростанций на территории Украины (город...

Александровская ГЭС

News image

Александровская ГЭС (укр. Олександрiвська ГЕС) — гидроэлектростанция расположенная в г. Южноукраинске, Николаевская область,Укра...

Курская АЭС

News image

Курская АЭС — атомная электрическая станция в России, расположена в г. Курчатове Курской области, в 40 км к западу от г. Курска ...

Братская ГЭС

News image

Бра тская гидроэлектроста нция (им. 50 летия Великого Октября) — гидроэлектростанция наАнгаре в городе Братск Иркутской области....

Бухгалтерія, фінанси, економіка кафедра економічної теорії та міжнародної економіки. . чай имбирь.

Авторизация

Login Register