Нанопроволочная гелиоэнергетика

Новости - Новости солнечых технологий

нанопроволочная гелиоэнергетика

Зная солнечную постоянную (~1 кВт/м2) и радиус Земли (~ 6000 км), легко подсчитать, что всего за 40 минут Солнце выдаёт Земле столько энергии, сколько всё человечество потребляет сегодня за год. А на юго-западе США имеется 250000 квадратных миль пустынных земель, где почти круглый год тепло и светло. Если только 10% этой площади покрыть солнечными панелями с кпд 25%, то американцам будут не нужны ни арабская нефть, ни российский газ, ни собственный уголь, ни даже атомные электростанции. Причём абсолютно чистое «солнечное» электричество будет стоить им не больше, чем нынешнее мазутно-газо-угольное (~ 15-17 центов за киловатт-час). В статье подробно описано, что надо сделать правительству США, чтобы достичь поставленной цели к середине текущего века, т.е., как надо правильно потратить полтриллиона долларов. Подсказано даже, как почти незаметно можно изъять эти полтриллиона из толстых кошельков бедных американцев. Насколько известно автору, в «великой энергетической державе» России, никаких таких планов никто не строит. И не потому, что не надо. Может быть, потому, что нет такой большой солнечной территории? Или потому, что сибирской нефти, газа и угля на наш век хватит? Как и в любом супер-перспективном и супер-доходном деле, без волшебной приставки «нано» и в солнечной энергетике не обходится. В данной заметке мы не будем касаться фотоэлектрохи мических преобразователей солнечной энергии, в которых нанопорошки или наногубки из TiO2 (или ZnO, или SnO2) играют ключевую роль (наряду с красителями, которые, собственно, и «усваивают» солнечные фотоны, см. Рис. 2) и которые может смоделировать каждый прямо на собственной кухне, а поговорим о полупроводниковых нанопроволоках (точнее, коаксиальных p-n нанокабелях), которые - в перспективе - обещают превзойти нынешние плоскопараллельные довольно массивные и достаточно дорогие солнечные элементы почти по всем параметрам. В отличие от Остапа Бендера, у физиков есть только два способа сделать нанопроволоку: а) вырастить и б) вытравить. Но, конечно, надо понимать, что и у способа а), и у способа б) существует куча разновидностей. Для того, чтобы представить, о каком массиве информации идёт речь, полезно взглянуть на Рис. 3, который показывает количество журнальных публикаций за 1994-2007 годы по углеродным нанотрубкам и всем прочим нанопроволокам. Показано также, кто вносит наибольший вклад в этот девятый вал информации. Из 13% «прочих» на Россию приходится менее 2%.

Основная физическая идея использования микро - и нанопроволок для изготовления солнечных элементов (СЭ) состоит в том, чтобы расперпендикулярить два процесса: поглощение света (по оси проволоки) и разделение фоторождённых электронно-дырочных пар (по радиусу проволоки). А основной экономический «драйвер» этого подхода заключается в том, что полупроводниковые «усики» можно вырастить на чём угодно, включая стальную ленту - фольгу. И фольга эта гораздо дешевле дефицитного кремния, который составляет основу нынешних солнечных элементов, и половина их стоимости приходится именно на него. Основной механизм потерь в плоских солнечных элементах иллюстрирует Рис. 4, на котором показана электронно-дырочная пара, рождённая солнечным фотоном на расстоянии от p-n перехода, превышающем диффузионную длину электрона в р-базе (Ln) Указанный электрон не дойдёт до р-п-перехода и не даст вклада в фототок, т.е. солнечный фотон будет израсходован напрасно. Поэтому в солнечных элементах .используются полупроводники, у которых диффузионная длина Ln порядка толщины всей р-области или даже превосходит её. А это непросто и, конечно, дорого, потому что материал должен быть весьма совершенным. Но дешёвое совершенство бывает только в сказках, а в реальной жизни для его достижения приходится изрядно попотеть. Снять проблему помогает радиальная организация р-п переходов.

Теперь электрону, рождённому солнечным светом в центральной жиле, надо пробежать совсем немного (порядка радиуса этой жилы, который может составлять всего-то 100-1000 нм), чтобы достичь р-п перхода и выполнить свою полезную функцию - превратить свет в электричество. Поэтому центральная жила может быть изготовлена из совсем плохого полупроводника с очень маленькой диффузионной длиной. А это исключительно важно, поскольку лучше всего кремниевые (и прочие полупроводниковые) нанопроволоки растут из капелек таких металлов, как золото, никель, железо, и все эти металлы, к сожалению, являются «убийцами» диффузионной длины в Si (и прочих полупроводниках).

Есть у нанопроволок и ещё одно важное преимущество. Солнечный свет не только поглощается в полупроводниках, но и не менее успешно отражается от них. И если не принимать специальных мер, то 25-35% солнечных фотонов просто отскочит от пластины кремния, например, вместо того, чтобы поглотиться. Поэтому все плоские солнечные элементы непременно снабжаются антиотражающими покрытиями во избежание таких потерь. А это - отдельная операция и, соответственно, добавка в цену. А вот в нанолесе из нанопроволок солнечный свет за счёт многократных переотражений совсем запутывается и потери на отражение сводятся к минимуму без всяких дополнительных усилий . Конечно, в нанопроволочной гелиоэнергетике есть и свои шедевры. К таковым можно отнести работу , выполненную группой китайских аспирантов под руководством проф.Чарльза Либера из уже упоминавшегося Гарвардского университета США. Они сумели сотворить p-i-n фотоэлемент из одной - единственной кремниевой нанопроволоки.

Для превращения заготовки в работающий p-i-n фотодиод необходимо было «приконтачиться» по отдельности к р - и n-областям, что и было успешно осуществлено с помощью электронной литографии, селективного травления (см. Рис. 8) и неимоверной усидчивости китайских соискателей американских PhD. КПД уникального солнечного элемента составил 3,5±0,2% при засветке, эквивалентной одному Солнцу, 4,1±0,2% - при двух Солнцах и 4,5±0,3% - при пяти. Конечно, это довольно скромные цифры на фоне нынешнего мирового рекорда (40,7%), поставленного матёрыми трёхпереходными солнечными элементами в системе InGaP/InGaAs/Ge при концентрации в 240 Солнц. Максимальная мощность достигала 200 пВт, чего вполне хватило для запитывания нанопроволочного-же сенсора, сделанного в той же группе по такой же технологии. В общем, наносенсорика приобрела и собственный солнечный наноисточник энергии. То ли ещё будет! И совсем недаром со страниц журнала «Physics Today» в июле с.г. прозвучал призыв - «подключись к Солнцу!», а его обложку украшало изображение солнечной панели.




Читайте:


Добавить комментарий


Защитный код
Обновить

Каталог энергетических компаний:

Проблема энергосбережения

News image

Для цивилизованных стран остается настоящей проблемой вопрос энергосбережения. В процессе поиска путей решения нашлось немало точе...

Усть-Илимская ГЭС

News image

Усть-Или мская гидроэлектроста нция — на реке Ангара в Иркутской области, в городе Усть-Илимск. Является третьей ступенью Ангарс...

Кременчугская ГЭС

News image

Кременчугская ГЭС (укр. Кременчуцька ГЕС) — третья ступень каскада гидроэлектростанцийна территории Украины (г.Светловодск, Киро...

Змиевская ТЭС ОАО Центрэнерго

News image

Змиевская ТЭС (до 1998 г. ГРЭС) входит в систему ОАО Государственная энергогенерирующая компания Центрэнерго Министерства топ...

Энергоатом

News image

Общие сведения. 17 октября 1996 года постановлением Кабмина Украины было создано государственное предприятие Национальная атомн...

Нижнекамская ГЭС

News image

Строительство электростанции началось в 1963 году. Первый агрегат был пущен в 1979 при отметке НПУ 62 м (проектная отметка НПУ 6...

Авторизация

Login Register