Дешевые солнечные батареи с нанокристаллами

Новости - Новости солнечых технологий

дешевые солнечные батареи с нанокристаллами

На рынке солнечных батарей в настоящий момент доминируют приборы, созданные на основе кристаллического кремния (c-Si), однако высокая стоимость последнего приводит к быстрому развитию технологий, использующих аморфный кремний (a-Si). Кроме снижения себестоимости устройств, использование аморфного кремния позволяет уменьшить толщину солнечных батарей, их вес и расход материалов за счет его более высокой поглощающей способности. Тем не менее, эффективность батарей на аморфном кремнии остается достаточно низкой (~9%) по сравнению с кристаллическим (~25%).

Повысить эффективность солнечных батарей на основе аморфного кремния потенциально возможно, используя полупроводниковые нанокристаллы. Как известно, одной из проблем на пути применения нанокристаллов в фотовольтаике и при производстве LED является разработка методов улучшения инжекции и транспорта носителей заряда в таких структурах. Наиболее распространенным среди них является использование длинноцепочечных органических молекул (часто - проводящих полимеров); в этом случае транспорт носителей заряда осуществляется сетью нанокристаллов и органических молекул. Однако подвижность носителей в этом случае не очень высока; кроме того, часто не удается добиться удовлетворительной фотохимической стабильности таких материалов. В работе, недавно опубликованной в Nano Letters, ученые из Национальной лаборатории в Лос-Аламосе предприняли достаточно успешную попытку создания солнечной батареи на основе нанокристаллов CdSe и PbS, стабилизированных пиридином, и аморфного кремния. На стекло, покрытое 200 нм слоем легированного оксида индия (ITO), сначала наносился промежуточный слой поли(3,4-этилендиокситиофена), легированного полистиролсульфонатом PEDOT-PSS, а затем пленка, содержащая нанокристаллы (100 - 150 нм). 100 нм слой аморфного кремния наносился магнетронным напылением, после чего к нанесенным через маску алюминиевым или золотым электродам серебряной пастой приклеивались медные провода, и устройство герметизировали прозрачной смолой.

Применение узкощелевых нанокристаллов PbS позволило значительно улучшить поглощающую способность материала в длинноволновой области и повысить концентрацию носителей заряда за счет дырок, формирующихся в кремнии. Использование же в качестве органического стабилизатора молекулы пиридина позволило значительно увеличить подвижность носителей заряда в материале. Полученные устройства демонстрировали значения внешнего квантового выхода до 50% в видимой области спектра.




Читайте:


Добавить комментарий


Защитный код
Обновить

Каталог энергетических компаний:

Южно-Украинская АЭС

News image

Общие сведения. Южно-Украинская АЭС (ЮУ АЭС) расположена на берегах реки Южный Буг вНиколаевской области. Проектом предусматрива...

Ленинградская АЭС

News image

Ленинградская АЭС расположена в 35 км западнее города Санкт-Петербурга на побережьеФинского залива в г. Сосновый Бор. Начало ...

Каховская ГЭС

News image

Каховская ГЭС (укр. Каховська ГЕС) — шестая (нижняя) ступень каскада днепровскихгидроэлектростанций на территории Украины (город...

Балаковская АЭС

News image

Балако вская АЭС — атомная электрическая станция, расположена рядом с городом Балаково, Саратовской области, на левом берегуСара...

Козлодуй (АЭС)

News image

АЭС «Козлодуй» — действующая атомная электростанция в Болгарии. Станция расположена на берегу р. Дунай, в 200 км к северу от сто...

Бушерская АЭС

News image

Бушерская АЭС (перс. نیروگاه اتمی بوشه...

Авторизация

Login Register